pmf_impr calculates the probability of observing population-level RNAseq data (reference- and variant allele counts per sample) assuming an imprinted binomial mixture model with the mean reference allele fraction in heterozygotes fixed at 0.5 (no allelic bias). More specifically, the formula used is (though under-the-hood not using R's built-in dbinom function but our own mathematical implementation):

pr * dbinom(x = ref_counts, size = ref_counts + var_counts, prob = 1-SE) +

0.5 * prv * dbinom(x = ref_counts, size = ref_counts + var_counts, prob = (0.5-(impr/2)) / (1-(impr/2)) * (1-SE) + (0.5/1-(impr/2)) * SE) +

0.5 * prv * dbinom(x = ref_counts, size = ref_counts + var_counts, prob = (0.5-(impr/2)) / (1-(impr/2)) * SE + (0.5/1-(impr/2)) * (1-SE)) +

pv * dbinom(x = ref_counts, size = ref_counts + var_counts, prob = SE)

pr, pv and prv are calculated assuming Hardy-Weinberg-Equilibrium with given input parameters (inbreeding coefficient inbr and reference allele frequency allelefreq)

pmf_impr(ref_counts, var_counts, allelefreq, impr, SE, inbr = 0)

Arguments

ref_counts

Number or Numeric vector Reference count(s).

var_counts

Number or Numeric vector. Variant count(s).

allelefreq

Number. Allele frequency.

impr

Number. Degree of imprinting.

SE

Number. Sequencing error rate.

inbr

Number. Degree of inbreeding (default = 0).

Value

Probability of observing ref_counts and var_counts

Examples

pmf_impr(10, 10, 0.5, 0, 0.002, 0.12)
#> [1] 0.0775267
pmf_impr(10, 10, 0.5, 1, 0.002)
#> [1] 1.854402e-22
pmf_impr(0, 10, 0.5, 1, 0.002, 0.12)
#> [1] 0.4900895
pmf_impr(c(5, 8, 10, 3, 5, 6, 23), c(8, 8, 6, 4, 4, 10, 0), 0.5, 1, 0.002, 0.12)
#> [1] 2.026483e-11 3.242372e-18 2.511768e-13 1.391617e-07 9.999602e-10
#> [6] 2.511768e-13 4.774990e-01
pmf_impr(c(5, 0, 0, 3, 5, 1, 23), c(1, 8, 6, 2, 0, 10, 0), 0.5, 1, 0.002)
#> [1] 5.940240e-03 4.920558e-01 4.940299e-01 1.992008e-05 4.950200e-01
#> [6] 1.078197e-02 4.774990e-01